CS:APP2e Web Aside MEM:BLOCKING:
Using Blocking to Increase Temporal Locality

Randal E. Bryant
David R. O’Hallaron

June 5, 2012

Notice

The material in this document is supplementary materiahtoliookComputer Systems, A Programmer’s
Perspective, Second Editiohy Randal E. Bryant and David R. O’Hallaron, published byektice-Hall
and copyrighted 2011. In this document, all referencesriregg with “CS:APP2e ” are to this book. More
information about the book is available @asapp. cs. crmu. edu.

This document is being made available to the public, sulbecbpyright provisions. You are free to copy
and distribute it, but you should not use any of this matevighout attribution.

1 Introduction

There is an interesting technique call@ddckingthat can improve the temporal locality of inner loops. The
general idea of blocking is to organize the data structuresgrogram into large chunks callbtbcks (In
this context, “block” refers to an application-level chuokdata,notto a cache block.) The program is
structured so that it loads a chunk into the L1 cache, dogbealieads and writes that it needs to on that
chunk, then discards the chunk, loads in the next chunk, @ s

Unlike the simple loop transformations for improving spatocality, blocking makes the code harder to
read and understand. For this reason, it is best suited fimiapng compilers or frequently executed
library routines. Still, the technique is interesting tadst and understand because it is a general concept
that can produce big performance gains on some systems.

*Copyright© 2010, R. E. Bryant, D. R. O’Hallaron. All rights reserved.



2 A Blocked Version of Matrix Multiply

Blocking a matrix multiply routine works by partitioningeéhmatrices into submatrices and then exploiting

the mathematical fact that these submatrices can be mategyust like scalars. For example, suppose we
want to compute&’’ = AB, whereA, B, andC are eacts x 8 matrices. Then we can partition each matrix

into four4 x 4 submatrices:

[011 012}:[/111 Alz][Bn 312]

Co Co Ag1 A Byy B
where
Ci1 = Ay B+ A12Bo
Ci2 = A11Bia+ A1pBo
Co1 = Ay By + ApBy

Cy = A Bia+ Ay Boy

Figure 1 shows one version of blocked matrix multiplicati@arnich we call thebijk version. The basic
idea behind this code is to partitiohandC' into 1 x bsize row sliver&nd to partitionB into bsizex bsize
blocks. The innermosdj, k) loop pair multiplies a sliver ofA by a block of B and accumulates the result
into a sliver ofC. Thei loop iterates through row slivers of A andC, using the same block ifs.

Figure 2 gives a graphical interpretation of the blockedectyxdm Figure 1. The key idea is that it loads
a block of B into the cache, uses it up, and then discards it. Referencdsenjoy good spatial locality
because each sliver is accessed with a stride of 1. Thersdggabd temporal locality because the entire
sliver is referencedsize times in succession. ReferencesRcenjoy good temporal locality because the
entirebsize x bsize block is accessed times in succession. Finally, the reference€’tbave good spatial
locality because each element of the sliver is written ircegsion. Notice that references(tado not have
good temporal locality because each sliver is only accessedime.

Blocking can make code harder to read, but it can also paydigmance dividends. Figure 3 shows the
performance of two versions of blocked matrix multiply onemBum Il Xeon systemisize = 25). Notice
that blocking improves the running time by a factor of two othee best nonblocked version, from about
20 cycles per iteration down to about 10 cycles per iteratibhe other interesting thing about blocking
is that the time per iteration remains nearly constant witneéasing array size. For small array sizes, the
additional overhead in the blocked version causes it to lawes than the nonblocked versions. There is a
crossover point at about = 100, after which the blocked version runs faster.

We caution that blocking matrix multiply does not improvefpemance on all systems. For example, on
a Core i7 system, there exist unblocked versions of matriltipiyithat have the same performance as the
best blocked version.



code/mem/matmult/bmm.c

v
{

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 }

oid bijk(array A array B, array C, int n, int bsize)

doubl e sum
int en = bsize » (n/bsize); /+ Amount that fits evenly into bl ocks */

for (i =0; i < n; i++4)
for (j =0; j <n; j++)
dqilli]l =0.0;

for (kk = 0; kk < en; kk += bsize) {
for (jj =0; jj <en; jj += bsize) {

for (i =0; i <n; i++) {
for (j =1Jj; J <jj + bsize; j++) {
sum= Ci][j];

for (k = kk; k < kk + bsize; k++) {
} sum += A[i ] [K]*B[K][j];
dilli] = sum

code/mem/matmult/bmm.c

Figure 1: Blocked matrix multiply. A simple version that assumes that the array size (n) is an integral
multiple of the block size (bsi ze).

Kk i i
% bsize . %
i kk bsize i
A B C
Use 1 x bsize row sliver Use bsize x bsize block Update successive

elements of 1 x bsize

bsize times n times in succession ;
row sliver

Figure 2:Graphical interpretation of blocked matrix multiply The innermost (3, k) loop pair multiplies a
1 x bsize sliver of A by a bsize x bsize block of B and accumulates into a 1 x bsize sliver of C.



—&— kji
- ki
—A— Kij
> ikj
K- jik
-&-ijk
- bijk (bsize = 25)
—&— bikj (bsize = 25)

Cyclesl/iteration

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
Array size (n)

Figure 3:Pentium Il Xeon blocked matrix multiply performance. Legend: bijk and bikj: two different
versions of blocked matrix multiply. The performance of different unblocked versions is shown for reference.



