
CS:APP2e Web Aside MEM:BLOCKING:
Using Blocking to Increase Temporal Locality∗

Randal E. Bryant
David R. O’Hallaron

June 5, 2012

Notice

The material in this document is supplementary material to the bookComputer Systems, A Programmer’s
Perspective, Second Edition, by Randal E. Bryant and David R. O’Hallaron, published by Prentice-Hall
and copyrighted 2011. In this document, all references beginning with “CS:APP2e ” are to this book. More
information about the book is available atcsapp.cs.cmu.edu.

This document is being made available to the public, subjectto copyright provisions. You are free to copy
and distribute it, but you should not use any of this materialwithout attribution.

1 Introduction

There is an interesting technique calledblockingthat can improve the temporal locality of inner loops. The
general idea of blocking is to organize the data structures in a program into large chunks calledblocks. (In
this context, “block” refers to an application-level chunkof data,not to a cache block.) The program is
structured so that it loads a chunk into the L1 cache, does allthe reads and writes that it needs to on that
chunk, then discards the chunk, loads in the next chunk, and so on.

Unlike the simple loop transformations for improving spatial locality, blocking makes the code harder to
read and understand. For this reason, it is best suited for optimizing compilers or frequently executed
library routines. Still, the technique is interesting to study and understand because it is a general concept
that can produce big performance gains on some systems.

∗Copyright c© 2010, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

1



2

2 A Blocked Version of Matrix Multiply

Blocking a matrix multiply routine works by partitioning the matrices into submatrices and then exploiting
the mathematical fact that these submatrices can be manipulated just like scalars. For example, suppose we
want to computeC = AB, whereA, B, andC are each8 × 8 matrices. Then we can partition each matrix
into four4 × 4 submatrices:

[

C11 C12

C21 C22

]

=

[

A11 A12

A21 A22

] [

B11 B12

B21 B22

]

where

C11 = A11B11 + A12B21

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22

Figure 1 shows one version of blocked matrix multiplication, which we call thebijk version. The basic
idea behind this code is to partitionA andC into 1 × bsize row sliversand to partitionB into bsize× bsize
blocks. The innermost(j, k) loop pair multiplies a sliver ofA by a block ofB and accumulates the result
into a sliver ofC. Thei loop iterates throughn row slivers ofA andC, using the same block inB.

Figure 2 gives a graphical interpretation of the blocked code from Figure 1. The key idea is that it loads
a block ofB into the cache, uses it up, and then discards it. References to A enjoy good spatial locality
because each sliver is accessed with a stride of 1. There is also good temporal locality because the entire
sliver is referencedbsize times in succession. References toB enjoy good temporal locality because the
entirebsize × bsize block is accessedn times in succession. Finally, the references toC have good spatial
locality because each element of the sliver is written in succession. Notice that references toC do not have
good temporal locality because each sliver is only accessedone time.

Blocking can make code harder to read, but it can also pay big performance dividends. Figure 3 shows the
performance of two versions of blocked matrix multiply on a Pentium III Xeon system (bsize = 25). Notice
that blocking improves the running time by a factor of two over the best nonblocked version, from about
20 cycles per iteration down to about 10 cycles per iteration. The other interesting thing about blocking
is that the time per iteration remains nearly constant with increasing array size. For small array sizes, the
additional overhead in the blocked version causes it to run slower than the nonblocked versions. There is a
crossover point at aboutn = 100, after which the blocked version runs faster.

We caution that blocking matrix multiply does not improve performance on all systems. For example, on
a Core i7 system, there exist unblocked versions of matrix multiply that have the same performance as the
best blocked version.



3

code/mem/matmult/bmm.c

1 void bijk(array A, array B, array C, int n, int bsize)
2 {
3 int i, j, k, kk, jj;
4 double sum;
5 int en = bsize * (n/bsize); /* Amount that fits evenly into blocks */
6

7 for (i = 0; i < n; i++)
8 for (j = 0; j < n; j++)
9 C[i][j] = 0.0;

10

11 for (kk = 0; kk < en; kk += bsize) {
12 for (jj = 0; jj < en; jj += bsize) {
13 for (i = 0; i < n; i++) {
14 for (j = jj; j < jj + bsize; j++) {
15 sum = C[i][j];
16 for (k = kk; k < kk + bsize; k++) {
17 sum += A[i][k]*B[k][j];
18 }
19 C[i][j] = sum;
20 }
21 }
22 }
23 }
24 }

code/mem/matmult/bmm.c

Figure 1: Blocked matrix multiply. A simple version that assumes that the array size (n) is an integral
multiple of the block size (bsize).

A B C

kk jj jj

kk

bsize bsize

bsize

bsize
1 1

i i

Use bsize x bsize block
n times in succession

Use 1 x bsize row sliver
bsize times

Update successive
elements of 1 x bsize
row sliver

Figure 2:Graphical interpretation of blocked matrix multiply The innermost (j, k) loop pair multiplies a
1 × bsize sliver of A by a bsize × bsize block of B and accumulates into a 1 × bsize sliver of C.



4

0

10

20

30

40

50

60

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

Array size (n)

C
yc

le
s/

it
er

at
io

n

kji

jki

kij

ikj

jik

ijk

bijk (bsize = 25)

bikj (bsize = 25)

Figure 3:Pentium III Xeon blocked matrix multiply performance. Legend: bijk and bikj: two different
versions of blocked matrix multiply. The performance of different unblocked versions is shown for reference.


